Virtual Pediatric Lecture Series

Common Neurosurgical Referrals: Low Back Pain and Chiari Malformations

Wednesday, February 5, 2025

Common Neurosurgical Referrals: Low Back Pain and Chiari Malformations

Aaron Yengo-Kahn, MD Pediatric Neurosurgery Children's Hospital of Orange County

The Big Five Brief Bio

Learning Objectives

- 1. Initiate the management and work-up of low back pain and identify red flags requiring imaging and referral.
- 2. Recognize symptoms of possible chiari malformation across pediatric age spectrum and initiate appropriate imaging and referral as appropriate
- 3. **Counsel patients** on the general next steps in management to be expected at their visit to neurosurgery.

Low Back Pain

In the Pediatric Patient

- 1. Prevalence 9-66% of pediatric population, up to 80% of people will have at least 1 episode in lifetime
- 2. Very common among athletes especially high contact/ repetitive impact sports like football and gymnasts

Low Back Pain

In the Pediatric Patient

- Targeted history/exam for red flags
- 2. Develop differential
- 3. Determine need for lab studies or imaging
- 4. Initiate management strategy
- 5. Consider referral

Red Flags for Expedited Work-up

Neurologic Deficits

- 1. Weakness
- 2. Numbness
- 3. Hyperreflexia/Clonus

Changes in Bowel/Bladder Function

- 1. Incontinent episodes
- 2. Increased frequency of voids

B Symptoms

- 1. Fevers
- 2. Night Sweats
- 3. Weight Loss
- 4. Nighttime pain

Disability due to Severity

- 1. Pain is so severe that patient is using ambulatory aids/wheelchair
- 2. Missing significant amounts of school

Recent Significant Trauma

- 1. High speed MVC
- 2. Fall from heights

Cutaneous Stigmata

- 1. Hairy Patch
- 2. Lumbosacral hemangiomas
- 3. Sacral dimples
- 4. Lumbosacral lipomas

Spine Physical Exam

Basics

- Observe gait and posture
- 2. Palpate spine including SI joints for focal pain
- 3. Full neurologic exam (cranial nerves, strength, sensation, reflexes)

Advanced

- 1. Stork Test
- 2. Trendelenburg Test of Pelvic Tilt
- 3. Passive Hip ROM
- 4. Hamstring Tightness vs SLR
- 5. Adams forward bend

Differential Diagnoses

Biomechanical/Trauma

- 1. Disc herniation
- 2. Spondylolysis/ Spondylolithesis
- 3. Muscular
- 4. Fracture

Neoplastic

- 1. Benign Bony
- 2. Malignant Bony
- 3. Intradural/CNS Tumors

Inflammatory/Infectious

- Spondyloarthropathies (Reactive, ERA, PA, etc.)
- 2. Osteomyelitis/ Osteodiscitis
- 3. Vasculitis

Case 1 - Back and Leg Pain

15yo M with back and right leg pain

History

- 1. PMH: HTN, BMI 44
- 1 month of pain starting after lifting heavy car parts
- 3. Back pain 8/10, R leg pain 7/10 radiating down posterolateral thigh to his foot
- 4. Legs "tighten up" after 0.5 mile walking
- 5. Numbness when prolonged standing, improves laying down
- 6. Baclofen tried and helpful
- 7. No red flags

15yo M with back and right leg pain

History

- 1. PMH: HTN, BMI 44
- 1 month of pain starting after lifting heavy car parts
- 3. Back pain 8/10, R leg pain 7/10 radiating down posterolateral thigh to his foot
- 4. Legs "tighten up" after 0.5 mile walking
- Numbness when prolonged standing, improves laying down
- 6. Baclofen tried and helpful
- 7. No red flags

- 1. Deload
- 2. PT referral
- Considered epidural steroid injections (family declined)

15yo M with back and right leg pain

6 week f/u

- 1. Exercising daily without excessive weight loading (aerobic, body weight etc)
- 2. Lost > 30 lbs!
- 3. Back pain significantly improved, no longer experiencing leg tightness
- 4. Leg pain less severe and less frequent

- 1. Continue Deload
- 2. Continue PT
- 3. Defer injections
- 4. F/u 3 months

Case 2 - Left back and Hip Pain

History/Exam

- 1. Has been going on for 1 month
- 2. Saw orthopedics for hip, XR negative

- 1. Naproxen
- 2. PT
- 3. MRI considered

1 month F/u

- 1. Has been going on for 2
- 2. PT eval occurred but has not been able to participate fully in exercise
- 3. Pain now radiating down lateral thigh into lateral leg

- 1. MRI ordered
- 2. Continuing PT
- 3. Medrol dosepak given more severe radicular pain

2 month F/u

- 3 months of pain now back mild but severe radiation of pain left hip through lateral ankle
- 2. MRI here ->
- 3. Medrol helped transiently
- 4. Continuing PT
- 5. Exam without deficits

2 month F/u

- 3 months of pain now back mild but severe radiation of pain left hip through lateral ankle
- 2. MRI reviewed large L4-5 LDH
- 3. Medrol helped transiently
- 4. Continuing PT
- 5. Exam without deficits

- 1. Continue PT
- 2. Referred for epidural steroid injections
- 3. Added gabapentin

6 month F/u

- 1. 7 months pain, limiting mobility, difficulty sitting
- 2. 2 rounds of injections with very temporary relief
- 3. No subjective motor or sensory change
- 4. Exam with subtle EHL weakness

Management

1. Recommended microdiscectomy

Annular Tear with disc extrusion

6 week Post-op F/u

- 1. Leg pain resolved
- 2. Back pain resolved
- 3. Returning to weight lifting
- 4. Waiting until 3-6 months to return to "moshing"

Case 3 - Back pain and disc bulges

17yo athlete with back pain

History

- 1. Notable PMH of tibial LCH
- 2. Presents with 6 months of back pain
- 3. MRI obtained by oncology and found disc bulges
- 4. Pain better with activity, worse at rest
- 5. Left hip historically higher than right

17yo athlete with back pain

- No PMH
- Back pain for many months
- Has been doing PT which helps him stay loose, but pain persists
- Pain in upper thoracic spine and low back
- Recently balance has felt off on skateboard

- No PMH
- Back pain for many months
- Has been doing PT which helps him stay loose, but pain persists
- Pain in upper thoracic spine and low back
- Recently balance has felt off on skateboard
- Notable exam findings: left leg diffusely weak, calf atrophy, hyperreflexia

Diagnoses

- 1. Thoracic myelopathy
- 2. Congenital scoliosis due to T10 hemivertebrae

Management

Surgery

- Decompression with costotransversectomy and two level partial corpectomy
- 2. Posterior spinal fusion due to iatrogenic instability and deformity correction

3 months post-op

- 1. Minimal back pain
- 2. Strength at baseline or better
- 3. Numbness in left foot resolved
- 4. Balance improved

Chiari Malformation

Basics in Work-Up, Treatment, Post-operative Management

15yo F with no medical history presents with headaches for over a year.

15yo F with no medical history presents with headaches for over a year.

- -headaches worse after lacrosse practice
- -difficulty training, exercising last year
- -hands feel different, trouble opening bottles

Classic Pathology

Chiari Malformations

- 1. <u>Chiari I posterior fossa is too small for the contents</u>
- 2. Chiari II associated with open spina bifida defects ("hind brain herniation")
- 3. Chiari III associated with occipital encephalocele
- 4. Chiari IV cerebellar/brainstem malformations

Classic Pathology

Chiari Malformations

- 1. Chiari I posterior fossa is too small for the contents
- Chiari II associated with open spina bifida defects ("hind brain herniation")
- 3. <u>Chiari III associated with occipital/high</u> <u>cervical encephalocele</u>
- 4. Chiari IV cerebellar/brainstem malformations

Chiari I Malformation

- Very Common 0.5-3.5% prevalence in general population
- Female > Male
- Occasionally genetic association with "chiari families"
- Typically not a medical emergency!

Chiari I Malformation

- Very Common 0.5-3.5% prevalence in general population
- Female > Male
- Occasionally genetic association with "chiari families"
- Typically not a medical emergency!

Classic Pathology

Chiari I Malformations

- 1. Valsalva-induced headaches
- 2. Central sleep apnea
- 3. Swallowing difficulties
- 4. Syrinx up to 20%
 - i. sensory/motor deficits possible
- 5. Scoliosis

Chiari I Malformation Presentation Spectrum

Swallow Apraxia

Sleep Disordered Breathing

Decreased Activity

Behavioral Symptoms

Balance Problems

Focal Neurologic Symptoms

Infant Toddler Adolescent Teen Adult

Chiari I Malformation Evaluation

```
1st Clinic Visit Symptom Profile Head Imaging (CT or MRI)

2-6 weeks

2nd Clinic Visit Symptom Profile + MRI Total Spine (+brain**)
```

MRI Evaluation

Intracranial Mass lesion?

Hydrocephalus?

Tonsils are down

CSF Leak?

Syrinx?

Tethered Cord?

Chiari I Malformation Evaluation

Chiari I Malformation Evaluation Prior to OR

```
1st Clinic Visit Symptom Profile Head Imaging (CT or MRI)

2-6 weeks

2nd Clinic Visit Symptom Profile + MRI Total Spine (+brain**)

2-4 weeks if surgery, 3mo-1 yr if no OR

3rd Clinic Visit Surgery OR Follow-up Imaging, Symptoms, etc
```

Choosing an Operation

CLINICAL ARTICLE

J Neurosurg Pediatr 30:39-51, 2022

- 1st Operation Options
 - Bone only decompression
 - Decompression with duraplasty
 - Tonsillar resection?
- Bone only and duraplasty equivalent in clinical improvement
- Duraplasty = higher rate of syrinx regression, less redo operations

Complications and outcomes of posterior fossa decompression with duraplasty versus without duraplasty for pediatric patients with Chiari malformation type I and syringomyelia: a study from the Park-Reeves Syringomyelia Research Consortium

	PFD (n = 75)	PFDD (n = 76)	P value	Mean difference (PFDD - PFD) (95% CI)	Odds ratio (PFDD vs PFD) (95% CI)
Clinical improvement ^a ≤24 mo after surgery, % (No.)	77.33 (58)	69.74 (53)	.29	-7.6 (-21.61 to 6.42)	0.58 (0.25- 1.40)
Syrinx regression ^b ≤24 mo after surgery, mean (SD), mm	1.15 (1.90) 73	3.07 (2.40) 74	.0001	1.92 (1.21- 2.62)	3.97 (2.25- 7.01)

Choosing an Operation

Dural augmentation approaches and complication rates after posterior fossa decompression for Chiari I malformation and syringomyelia: a Park-Reeves Syringomyelia Research Consortium study

 Dural repair with autograft -> lower rates of pseudomeningoceles, meningitis

Chiari Decompression Surgery

The opening of the dura mater to visualize and reduce the herniated cerebellar tonsils.

The closing of the dura mater with a patch once the cerebellar tonsils have been reduced.

's

Chiari decompression and duraplasty.

Initial improvement in headaches.

Few months later, headaches return and strange hot/cold sensory changes on arms.

6 wks post-op

12 wks post-op

Revision decompression and duraplasty with dissection of 4th ventricle adhesions

Again improves for several months.

6 month f/u

Improved syrinx

18 month f/u

Headaches returned.

Balance problems.

Right arm weak

Return to OR for revision decompression and placement of 4th ventricular stent.

Immediate post-op improvement in strength, headaches and balance.

Pre

Post

25yo M

Acute right sided hemisensory loss, tongue fasciculations, bulbomyelopathy

Midline craniocervical anatomy

Left craniocervical anatomy

Right craniocervical anatomy

MRI - rhomboencephalopathy (chiari 1.5), syringomyelia

Surgical Plan

- Posterior decompression w/duraplasty and tonsillopexy
 - a. Get safe decompression
- 2. Posterior OCF
 - a. C2 hemivertebrae and C1 assimilation
 -> natural history is to worsen BI with time
- 3. Test mobility intra-op and potential to reduce craniocervical kyphosis
- 4. Extreme lateral approach for odontoid resection if needed
 - Diminutive right side vertebral artery ("BTO" intra-op with clipping and IOM) that could potentially be sacrificed to increase working corridor
 - b. Transoral/Endonasal route increased risk with medial right ICA and anomalous left vertebral artery course

Setup

- 1. Phase 1 prone
- 2. Anesthesia
 - a. TIVA
 - b. A-line
 - c. CVC
 - d. MAP>80
 - e. Foley
 - f. Dexamethasone
- 3. IOM
 - a. SSEPs, MEPS, consider lower cranial nerves
 - b. Pre-flip baseline with significant pre-op deficits on exam
- 4. Stealth CTA head merged with thin slice C-spine (for extreme lateral)

Intra-op

- 1. C2 noted to be highly mobile
- 2. Large tonsils were easily reduced leaving foramen magnum well decompressed.
- 3. Key screw into C2 pars on the right to distract against
- 4. Rod plates fixed to skull and loose in the cervical screws.
- Distracted spine away from skull w/lamina spreader between right C2 screw and skull base.
- 6. Locked in place -> O-arm to check reduction

Practice Contact Information

CHOC Specialists Neurosurgery

CHOC Commerce Tower

505 S. Main Street, Suite 300

Orange, CA 92868

To refer patients, please call:

• **Appointments:** 714-509-7070

• **Fax:** 714-509-7074

Online Referral Portal: choc.org/referrals

Specialty Care Physician Concierge Service

• 714-509-4013

Physicians available via Voalte®

Contact Us

CHOC, now part of Rady Children's Health

Business Development

Email: BDinfo@choc.org

Phone: 714-509-4291

Upcoming Virtual Lecture Series:

Free registration at: choc.org/VirtualLectureSeries

SCAN QR CODE TO REGISTER

Thank you.

