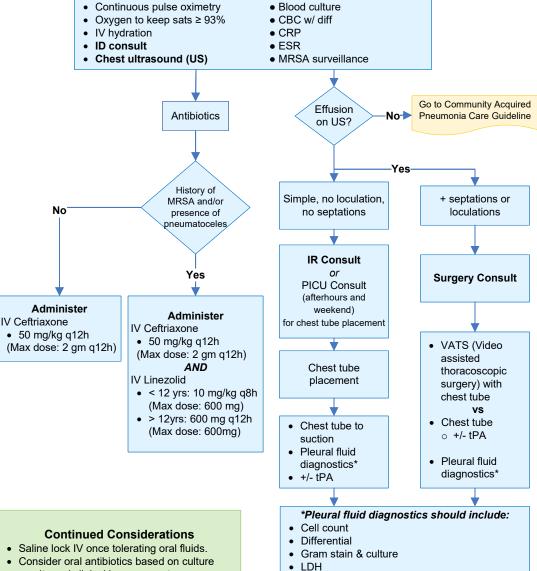
Empyema Care Guideline

Inclusion Criteria - Previously healthy children

- > 3 months of age
- · Suggestion of clinically significant effusion on chest x-ray


Exclusion Criteria

- < 3 months of age
- Sepsis/shock/multiple organ dysfunction syndrome (MODS)
- Pneumonia without effusion (use Community Acquired Pneumonia Care Guideline)
- Toxic appearance, impending respiratory failure

Assessment

Respiratory status (increased rate for age, signs of increased work of breathing such as retractions or use of accessory muscles), SPO2, vital signs, immunization status

Interventions

Recommendations/Considerations

- Empyema is pus in the pleural space.
- The most common pathogens seen in empyema are S. pneumoniae. Staphylococcus aureus, and S. pyogenes, although some cases may have a negative culture.
- · Chest CT isn't typically used to diagnose effusion/empyema in children. However, it can be helpful to diagnose lung abscesses and/or identify other structural anomalies.
- · Most guidelines recommend treating pediatric empyema with a chest tube and fibrinolytics (tPA), reserving VATS for cases where this fails.
- · Initial VATS may be chosen instead if fibrinolytics are contraindicated (e.g., necrotizing pneumonia, bronchopleural fistula) or in pyopneumothorax.
- · Although outcomes are similar, debate persists - some clinicians favor upfront VATS for faster lung re-expansion and direct infection clearance.

Chest Tube Considerations

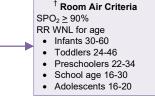
- Chest tube to water seal per IR/ Surgery recommendations usually when output decreases to < 20 mL/kg/
- tPA per IR or surgery x 3 days if indicated administered by medical staff per policy
- Chest Tube Placement Policy: SP106v5
- Chest Tube-Assistance with Insertion. Care of, and Assistance with Removal: F794v3

Patient/Family Education

- · Complicated Pneumonia-Pleural Effusion and Empyema
- Surgical Site Infection (located in Patient and Family Education)

Discharge Criteria

Total protein


• Stable for a period of observation (min 4-6 hrs) after chest tube removal (repeat chest x-ray only if clinically indicated e.g., fever, increased respiratory rate, or other concerning symptoms).

pH

- Diet tolerated and adequately hydrated.
- No supplemental O2 needed for at least 24 hrs; meets room air criteria[†]
- Follow-up care coordinated; home IV antibiotic therapy arranged if ordered.

Reassess the appropriateness of Care Guidelines as condition changes and 24 hrs after admission. This guideline is a tool to aid clinical decision making. It is not a

standard of care. The physician should deviate from the guideline when clinical judgment so indicates.

results and clinical improvement.

Empyema Care Guideline

Empyema Care Guideline References

- Armin, S., Karimi, A., Fallah, F., Ghanaei, R.M., Tabatabaei, S.R., Fahimzad, S.A., Hoseini-Alfatemi, S. M., Rajabnejad, M., Eshaghi, H., Soleimani, G., & Heydari, H. (2020). Clinical features, management and outcomes of pediatric pleural empyema: A retrospective, multicenter cross sectional study. *Journal of Acute Disease*, 9(6), 253–256. https://doi.org/10.4103/2221-6189.299180 (Level III)
- Buonsenso, D., Cusenza, F., Passadore, L., Bonanno, F., Calanca, C., Mariani, F., Di Martino, C., Rasmi, S., & Esposito, S. (2024). Parapneumonic empyema in children: a scoping review of the literature. *Italian Journal of Pediatrics*, 50(1), 1–21. https://doi.org/10.1186/s13052-024-01701-1 (Level V)
- Haggie, S., Selvadurai, H., Gunasekera, H., Fitzgerald, D. A., Lord, D., & Chennapragada, M. S.
 (2022). Pediatric empyema: Are ultrasound characteristics at the time of intervention predictive of reintervention? *Pediatric Pulmonology*, 57(7), 1643–1650. https://doi.org/10.1002/ppul.25931 (Level III)
- Sacco Casamassima, M. G., Noel-MacDonnell, J. R., Oyetunji, T. A., & St Peter, S. D. (2024). Contemporary use of fibrinolytics in the management of pediatric empyema. *Pediatric Surgery International*, 40(1), 289. https://doi.org/10.1007/s00383-024-05868-w (Level III)
- Singh, B., Mathew, J. L., Jayashree, M., Saxena, A. K., & Ray, P. (2025). Comparison of six versus three doses of intrapleural fibrinolytic therapy in children with empyema: A randomized controlled trial. *Indian Journal of Pediatrics*. https://doi.org/10.1007/s12098-024-05405-6 (Level II)
- Spencer, B. L., Lotakis, D. M., Vaishnav, A., Carducci, J., Hoff, L., Speck, E., & Perrone, E. E. (2024). Implications of using a clinical practice guideline on outcomes in pediatric empyema. *Journal of Surgical Research*, 303, 390–395. https://doi.org/10.1016/j.jss.2024.09.045 (Level III)

American Thoracic Society Classifications of Empyema

- Stage 1: Exudative
- Accumulation of thin pleural fluid w/ few cells
- Pleura & lung are mobile
- Stage 2: Fibropurulent
- Infected pleural fluid consolidation & accumulation of fibrous material
- Formation of loculations
- · Loss of lung mobility
- Stage 3: Organizing
- Thick fibrinous peel formation
- Lung entrapment